TR-19/2007
 Chemical Resistance of Thermoplastics Piping Materials

@ plastics.pperinstiture

CHEMICAL RESISTANCE OF THERMOPLASTICS PIPING MATERIALS

Foreword

This report was developed and published with the technical help and financial support of the members of the PPI (Plastics Pipe Institute, Inc.). The members have shown their interest in quality products by assisting independent standardsmaking and user organizations in the development of standards, and also by developing reports on an industry-wide basis to help engineers, code officials, specifying groups, and users.

The purpose of this technical report is to provide information on the transport of various chemicals using thermoplastic piping materials.

This report has been prepared by PPI as a service of the industry. The information in this report is offered in good faith and believed to be accurate at the time of its preparation, but is offered without any warranty, expressed or implied, including WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Consult the manufacturer for more detailed information about the particular weathering package used for its piping products. Any reference to or testing of a particular proprietary product should not be construed as an endorsement by PPI, which do not endorse the proprietary products or processes of any manufacturer. The information in this report is offered for consideration by industry members in fulfilling their own compliance responsibilities. PPI assumes no responsibility for compliance with applicable laws and regulations.

PPI intends to revise this report from time to time, in response to comments and suggestions from users of the report. Please send suggestions of improvements to the address below. Information on other publications can be obtained by contacting PPI directly or visiting the web site.

The Plastics Pipe Institute
469-499-1044
www.plasticpipe.org

This report has been developed as an informative guide on resistance of thermoplastic piping materials to chemical attack. It is divided into two main sections: (1) a discussion of chemical resistance and general considerations for end use applications and (2) a listing of chemical resistance data (table) for several thermoplastic piping materials applicable to non-pressure applications. Determination of suitability for specific applications under stress (pressurized service) is beyond the scope of this report.

SECTION I: CHEMICAL RESISTANCE IN GENERAL

Thermoplastic materials generally are resistant to attack from many chemicals which makes them suitable for use in many process applications. The suitability for use in a particular process piping application is a function of:
I. Material
A. The specific plastic material: ABS, CPVC, PP, PVC, PE, PB, PVDF, PEX ${ }^{1}$, PA11, PK
B. The specific plastic material physical properties as identified by its cell classification according to the appropriate ASTM material specification.
II. Product and Joint System
A. Piping product dimensions, construction, and composition (layers, fillers, etc.).
B. Joining system. Heat fusion and solvent cementing do not introduce different materials into the system. Mechanical joints can introduce gaskets such as elastomers, or other thermoplastic or non-thermoplastic materials used as mechanical fitting components.
C. Other components and appurtenances in the piping system.
III. Use Conditions - Internal and External
A. Chemical or mixtures of chemicals, and their concentrations.
B. Operating temperature - maximum, minimum, and cyclical variations.
C. Operating pressure or applied stress - maximum, minimum and cyclical variations.
D. Life-cycle information - such as material cost, installation cost, desired service life, maintenance, repair and replacement costs, etc.

[^0]
Types of Chemical Attack on Plastics

In general, chemicals that affect plastics do so in one of two ways. One effect is chemical solvation or permeation; the other is direct chemical attack.

Chemical Solvation or Permeation

In the case of solvation or permeation, physical properties may be affected, but the polymer molecule structure itself is not chemically changed, degraded or destroyed. In solvation or permeation, gas, vapor or liquid molecules pass through the polymer, typically without damaging the plastic material itself. If the solvating chemical can be removed completely, the plastic is generally restored to its original condition. However, removal of the chemical is not always possible, and, in such cases, these chemical solvation effects may be permanent.

Sometimes the polymer itself may not be soluble, but it may contain a soluble compounding ingredient that may be extracted from the polymer compound. This is rare because such extractable ingredients are either not used in pipe compounds, or they are chemically bonded to the molecular polymer matrix and in such small amounts that they cannot be leached out to any significant extent.

Permeation may do little if any harm to the material, but it may have applicationrelated effects. The permeating chemical may transfer into a fluid on the other side of the pipe. In general, thermoplastic pipes should not be used where a permeating chemical in the environment surrounding the pipe could compromise the purity of a fluid, such as potable water inside the pipe (See also PPI Statement N on Pipe Permeation). In gas or vapor transmission service, there may be a very slight loss of contents through the pipe wall. Lastly, a permeating chemical entrained in the material may be released when heat fusion or solvent cement joining is performed. Thus, heat fusion or solvent cement joining may be unreliable if performed on permeated pipes.

Direct Chemical Attack

Direct chemical attack occurs when exposure to a chemical causes a chemical alteration of the polymer molecules by chain scission, crosslinking, oxidation or substitution reactions. Direct chemical attack may cause profound, irreversible changes that cannot be restored by removal of the chemical. Examples of this type of attack are 50% chromic acid at $140^{\circ} \mathrm{F}$ on PVC, aqua regia on PVC at 73 ${ }^{\circ} \mathrm{F}, 95 \%$ sulfuric acid at $73^{\circ} \mathrm{F}$ on PE and wet chlorine gas on PVC and PE. Direct chemical attack frequently causes a severe reduction of mechanical physical properties such as tensile strength, ductility, and impact resistance, and susceptibility to cracking from applied stress (stress cracking).

Chemical resistance may vary greatly from one plastic material to another (i.e., PVC, ABS, PE, etc.), and also among different cell classifications of the same plastic type (e.g. PVC 1120 to PVC 2110, PE 3608 to PE 4710, etc.). There may also be slight variations among commercial products having the same cell classification.

The chemical resistance of plastic piping is basically a function of the chemical resistance of the thermoplastic material, in addition to additives and other ingredients in the final compound. In general, the less inert compounding ingredients used the better the chemical resistance. Thermoplastic pipes with significant filler percentages may be susceptible to chemical attack where an unfilled material may be affected to a lesser degree or not at all.

Other Considerations

Chemical Families

While the effect of each individual chemical is specific, some chemicals can be grouped into general categories based on similarities in chemical characteristics (acids, bases, alcohols, etc.). For example, water-based (aqueous) solutions of neutral inorganic salts generally have the same effect on thermoplastic piping materials as water alone; thus, sodium chloride, potassium alum, calcium chloride, copper sulfate, potassium sulfate and zinc chloride solutions have the same effect as water. However, at elevated temperatures and/or high concentrations, some oxidizing salt solutions may attack some plastic materials.
Further, with organic chemicals in a specific series such as alcohols, ketones, or acids, etc., as the molecular weight of the organic chemical series increases, the chemical resistance of a particular plastic material to members of the specific organic chemical series frequently also increases. Thus, while one type of polyvinyl chloride at $73^{\circ} \mathrm{F}$ is not suitable for use with ethyl acetate, it is suitable for the higher molecular weight butyl acetate.

Accelerating factors (concentration, temperature, stress)

Generally, the resistance of a particular plastic to a specific chemical decreases with an increase in concentration. For example, at $73^{\circ} \mathrm{F}$ polyethylene pipe can be used to carry 70% sulfuric acid but is not satisfactory for 95% sulfuric acid.
Also, the resistance of a particular plastic to a specific chemical generally decreases as temperature increases, generally decreases with increasing applied stress, and generally decreases where temperature or applied stress are varied or cycled. These effects can be greater overall in combination.

Combinations of Chemicals

In some cases, combinations of chemicals may have a synergistic effect on a thermoplastic material where the individual chemicals do not. It cannot be
assumed that an individual chemical's lack of effect would apply for combinations that include several chemicals. When the possible combined effect of several chemicals is unknown, the material should be tested in the complete chemical mixture(s) in question.

Multi-Layered (Composite) Piping

Some piping products utilize a multi-layered (composite) construction, in which the pipe wall is constructed of layers of different materials. The layers may consist of both thermoplastic and non-thermoplastic - for example, PE/AL/PE and PEX/AL/PEX pipes, which contain a mid-wall aluminum layer. An allthermoplastic composite pipe may contain PVC, ABS, and PVC layers. Layered composite material pipes may have chemical resistance that differs from the chemical resistance of the individual materials.

Rate of Chemical Attack

Chemicals that attack plastics do so at a certain rate, some slowly and some more quickly. But usually, any chemical attack is increased when temperature or stress are increased, or when temperature or stress are varied. The particular rate must be taken into consideration in the life-cycle evaluation for a particular application. It has been observed in some chemical plants that while a particular application may have a relatively short service life, the overall life-cycle cost may be economically feasible and justifiable. Each combination of material cost, installation cost and service life must be evaluated and judged on its own merits.

In some cases involving a slow rate of chemical attack, particularly when the application will be pressurized, simple immersion data, like that represented in the following resistance tables, may not adequately characterize performance throughout the intended design life. Longer-term testing to replicate service conditions is advisable to fully measure the effects of these chemicals.

SECTION 2: CHEMICAL RESISTANCE DATA FOR THERMOPLASTIC PIPING IN NON-PRESSURE APPLICATIONS AND DATA TABLE

When thermoplastic pipes come into contact with chemical agents, it is important to know how the pipe may be affected. For gravity flow or non-pressure applications, where the pipe is not subject to continuous internal pressure or thermal stress, chemical immersion test data may provide suitable information. The pipe manufacturer may have additional data from similar tests, or information on previous installations under similar field conditions.
The following table provides resistance data, with the following cautions:
I. Data Sources. The following chemical resistance information has been obtained from numerous sources. The data are based primarily on plastic material test specimens that have been immersed in the chemical, and to a lesser degree, on field-experience. In most cases, detailed information on the test conditions (such as exposure time), and on test results (such as change in weight, change in volume, and change in strength) was not available. Therefore, this information is best used only for comparison of different thermoplastic materials.
II. Combinations of Chemicals. . Chemicals that individually do not have an effect may affect the pipe if combined with certain other chemicals. The listings that follow do not address chemical combinations.
III. Composite Piping. Layered composite piping may have chemical resistance that differs from that of the individual materials in the layers. The listings that follow are not applicable to layered composite piping products.
IV. Applicability to fiberglass, filled materials. The listings that follow are not applicable to composite piping products such as reinforced epoxy resin (fiberglass) pipes, or to thermoplastic pipes containing significant percentages of filler materials.
V. Concentrations. Where no concentrations are given, the relatively pure material is indicated, except in the case of solids where saturated aqueous solutions are indicated.

NOTE: Even though indicated as acceptable with certain temperature limitations, the use of PVC piping with liquid hydrocarbons such as gasoline and jet fuels should be limited to short-term exposure such as secondary containment systems. This piping is not recommended for long-term exposure to liquid hydrocarbons.

Resistance Codes

The following code is used in the data table:

Code	Meaning	Typical Result
140	Plastic type is generally resistant to temperature (${ }^{\circ} \mathrm{F}$) indicated by code.	Swelling < 3\% or weight loss < 0.5\% and elongation at break not significantly changed.
R to 73	Plastic type is generally resistant to temperature (${ }^{\circ} \mathrm{F}$) indicated by code and may have limited resistance at higher temperatures.	Swelling < 3\% or weight loss < 0.5\% and elongation at break not significantly changed.
C to 73	Plastic type has limited resistance to temperature (${ }^{\circ} \mathrm{F}$) indicated by code and may be suitable for some conditions.	Swelling 3-8\% or weight loss 0.5-5\% and/or elongation at break decreased by $<50 \%$.
N	Plastic type is not resistant.	Swelling > 8\% or weight loss > 5\% and/or elongation at break decreased by $>50 \%$.
-	Data not available.	

Plastic Materials Identification

ABS	acrylonitrile-butadiene-styrene
CPVC	chlorinated polyvinyl chloride
PP	polypropylene
PVC	polyvinyl chloride
PE	polyethylene
PB	polybutylene
PVDF	poly vinylidene fluoride
PEX	crosslinked polyethylene
PA11	polyamide 11
PK	polyketone

> CHEMICALS THAT DO NOT NORMALLY AFFECT THE PROPERTIES OF AN UNSTRESSED THERMOPLASTIC MAY CAUSE COMPLETELY DIFFERENT BEHAVIOR (SUCH AS STRESS CRACKING) WHEN UNDER THERMAL OR MECHANICAL STRESS (SUCH AS CONSTANT INTERNAL PRESSURE OR FREQUENT THERMAL OR MECHANICAL STRESS CYCLES).
> UNSTRESSED IMMERSION TEST CHEMICAL RESISTANCE INFORMATION IS APPLICABLE ONLY WHEN THE THERMOPLASIC PIPE WILL NOT BE SUBJECT TO MECHANICAL OR THERMAL STRESS THAT IS CONSTANT OR CYCLES FREQUENTLY.

> WHEN THE PIPE WILL BE SUBJECT TO A CONTINUOUS APPLIED MECHANICAL OR THERMAL STRESS OR TO COMBINATIONS OF CHEMICALS, TESTING THAT DUPLICATES THE EXPECTED FIELD CONDITIONS AS CLOSELY AS POSSIBLE SHOULD BE PERFORMED ON REPRESENTATIVE SAMPLES OF THE PIPE PRODUCT TO PROPERLY EVALUATE PLASTIC PIPE FOR USE IN THIS APPLICATION.
May not be fully applicable to pressurized applications

Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Acetaldehyde$\mathrm{CH}_{3} \mathrm{CHO}$	--	---	N	140	N	C to 73	C to 73	---	C to 140	C to 176	R to 73
	Aq. Of 40\%	---	N	---	C to 73	R to 73	---	N	R to 73	---	---
Acetamide $\mathrm{CH}_{3} \mathrm{CONH}_{2}$	5\%	120	---	140	---	140	---	---	140	---	---
Acetic Acid $\mathrm{CH}_{3} \mathrm{COOH}$	vapor	120	180	180	140	140	140	---	140	---	---
	5\%	---	---	---	---	---	---	---	---	---	R to 176
	10\%	---	---	---	---	---	---	R to 248	140	R to 176	---
	25\%	N	180	180	140	140	140	---	140	---	---
	40\%	---	---	---	---	---	---	R to 140	R to 176	---	---
	50\%	---	---	---	---	---	---	R to 140	R to 176	C to 68	---
	60\%	N	N	180	73	73	73	R to 104	73	---	---
	80\%	---	---	---	---	---	---	R to 104	---	---	---
	85\%	N	N	120	73	73	73	---	73	---	---
	glacial	N	N	120	73	73	73	R to 104	R to 68	---	---
Acetic Anhydride $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$	---	N	N	73	N	73	140	N	73	C to 68	---
$\begin{aligned} & \text { Acetone } \\ & \mathrm{CH}_{3} \mathrm{COCH}_{3} \end{aligned}$	5\%	N	N	73	N	C to 73	140	R to 212	C to 73	C to 140	---
	10\%	---	---	---	---	---	---	R to 122	---	---	--
	100\%	---	---	---	---	---	---	---	---	---	R to 73 C to 122
Acetophenone $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$	---	N	---	120	--	73	---	R to 68	73	---	---
Acetyl Chloride $\mathrm{CH}_{3} \mathrm{COCl}$	---	N	N	---	N	---	---	N	---	---	---
Acetylene $\mathrm{HC} \equiv \mathrm{CH}$	gas 100\%	73	N	73	N	73	C to 73	---	73	140	---
Acetylnitrile	---	---	N	---	N	---	---	---	---	---	---
Acrylic Acid $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCOOH}$	97\%	---	N	---	N	140	---	---	140	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications

Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Acrylonitrile $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHC} \equiv \mathrm{N}$	---	---	N	---	N	140	---	---	140	---	---
Adipic Acid $\mathrm{COOH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$	sat'd	---	180	140	140	140	73	R to 176	140	---	---
Allyl Alcohol $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OH}$	96\%	---	C to 73	140	R to 73	140	140	---	N	---	---
Allyl Chloride $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Cl}$	--	---	N	---	N	C to 73	---	140	C to 73	---	---
	Liquid	---	---	---	---	---	---	R to 68	---	---	---
Aluminum Ammonium Sulfate (Alum) $\mathrm{AlNH}_{4}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$	sat'd	---	180	140	140	140	---	---	140	---	---
Aluminum Chloride Aqueous AlCl_{2}	sat'd	160	180	180	140	140	140	R to 212	140	---	---
Aluminum Fluoride Anhydrous AlF_{3}	sat'd	160	180	180	73	140	140	R to 212	140	---	---
Aluminum Hydroxide $\mathrm{Al}(\mathrm{OH})_{3}$	sat'd	160	180	180	140	140	140	R to 212	140	---	N
Aluminum Nitrate $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$	sat'd	---	180	180	140	140	140	R to 212	140	---	---
Aluminum Oxychloride	--	---	180	180	140	---	140	---	---	---	---
Aluminum Potassium Sulfate (Alum) $\operatorname{AIK}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$	sat'd	160	180	140	140	140	---	R to 212	140	---	---
Aluminum Sulfate (Alum)$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	sat'd	160	180	140	140	140	C to 73	R to 212	140	194	---
	20\%	---	--	---	---	---	---	---	---	---	R to 73
Ammonia Gas NH_{3}	100\%	N	N	140	140	140	140	---	140	140	---
Ammonia Liquid NH_{3}	100\%	160	N	140	N	140	73	---	140	140	---
Ammonium Acetate $\mathrm{CH}_{3} \mathrm{COONH}_{4}$	sat'd	120	180	73	140	140	---	R to 212	140	---	---
Ammonium Bifluoride $\mathrm{NH}_{4} \mathrm{HF}_{2}$	sat'd	---	180	180	140	---	140	---	140	---	---
Ammonium Bisulfide $\left(\mathrm{NH}_{4}\right) \mathrm{HS}$	---	---	---	---	140	---	---	---	---	---	---
Ammonium Carbonate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	sat'd	---	180	212	140	140	140	R to 248	140	---	---
Ammonium Chloride $\mathrm{NH}_{4} \mathrm{Cl}$	sat'd	120	180	212	140	140	140	R to 212	140	---	--

May not be fully applicable to pressurized applications

May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Ammonium Dichromate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	--	---	73	---	73	---	---	---	---	---	---
Ammonium Fluoride $\mathrm{NH}_{4} \mathrm{~F}$	10\%	120	180	212	140	140	---	R to 212	140	---	---
	25\%	120	180	212	C to 140	140	73	---	140	---	---
Ammonium Hydroxide$\mathrm{NH}_{4} \mathrm{OH}$	10\%	120	N	212	140	140	140	---	140	---	N
	30\%	---	---	---	---	R to 140	---	---	R to 140	---	---
	Conc.	---	---	---	---	---	---	---	194	---	---
Ammonium Metaphosphate	Sat'd	--	--	R to 212	R to 140	R to 140	R to 140	R to 248	R to 140	---	---
Ammonium Nitrate $\mathrm{NH}_{4} \mathrm{NO}_{3}$	sat'd	120	180	212	140	140	140	R to 212	140	---	---
Ammonium Persulfate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	---	---	180	140	140	140	140	R to 212	140	---	---
Ammonium Phosphate (Monobasic) $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$	all	120	180	212	140	140	140	R to 248	140	---	---
Ammonium Sulfate$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	Sat'd.	120	180	212	140	140	140	R to 212	140	---	---
	20\%	---	---	---	---	---	---	---	---	---	R to 73
Ammonium Sulfide $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$	dilute	120	180	212	140	140	140	---	140	---	---
	Sat'd.	---	--	---	---	140	---	---	--	---	---
Ammonium Thiocyanate $\mathrm{NH}_{4} \mathrm{SCN}$	50-60\%	120	180	212	140	140	140	R to 212	73	---	---
Amyl Acetate $\mathrm{CH}_{3} \mathrm{COOC}_{5} \mathrm{H}_{11}$	--	N	N	N	N	73	---	R to 122	73	C to 194	---
Amyl Alcohol $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$	--	---	N	---	N	140	140	R to 212	R to 140	---	---
	100\%	---	---	---	---	---	C to 140	---	---	---	---
n-Amyl Chloride $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{Cl}$	--	N	N	N	N	C to 73	---	---	C to 73	---	---
Anisole $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$	--	---	---	---	---	---	---	---	---	---	C to 73
Aniline $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	--	N	N	---	N	73	C to 140	R to 68	C to 140	---	N
Aniline Chlorohydrate	--	---	N	---	N	C to 73	N	---	C to 73	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Aniline Hydrochloride $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \bullet \mathrm{HCl}$	sat'd	---	N	---	N	140	N	---	140	---	---
Anthraquinone $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{2}$	--	---	180	---	140	C to 73	C to 73	---	C to 73	---	---
Anthraquinone Sulfonic Acid $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{O}_{2} \bullet \mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	--	---	180	73	140	140	C to 73	---	C to 73	---	---
Antifreeze	--	---	---	---	---	---	---	---	---	---	R to 73 C to 176
Antimony Trichloride SbCl_{3}	sat'd	---	180	140	140	140	140	R to 140	140	---	---
Aqua Regia (Nitrohydrochloric Acid)	--	N	R to 73	N	C to 73	N	N	C to 194	N	---	---
Arsenic Acid $\mathrm{H}_{3} \mathrm{AsO}_{4}$	80\%	---	180	140	140	140	140	R to 248	140	---	---
Aryl Sulfonic Acid $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$	--	---	180	---	140	73	---	---	73	---	---
Asphalt	--	---	N	73	N	73	140	---	73	---	---
Barium Carbonate BaCO_{3}	sat'd	120	180	140	140	140	140	R to 248	140	---	---
Barium Chloride $\mathrm{BaCl} 2 \cdot 2 \mathrm{H} 2 \mathrm{O}$	sat'd	120	180	140	140	140	140	R to 212	140	194	---
Barium Hydroxide $\mathrm{Ba}(\mathrm{OH})_{2}$	sat'd	73	180	140	140	140	140	---	R to 212	---	---
	10\%	---	---	---	---	---	---	---	---	---	R to 73
	30\%	---	---	---	---	R to 140	---	---	R to 140	---	---
Barium Nitrate $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	sat'd	73	180	140	73	140	---	---	140	---	---
Barium Sulfate BaSO_{4}	sat'd	73	180	140	140	140	140	R to 212	140	---	---
Barium Sulfide BaS	sat'd	73	180	140	140	140	140	---	R to 248	---	---
Beer	--	120	180	180	140	R to 140	140	R to 248	R to 140	68	R to 73
Beet Sugar Liquors	--	---	180	180	140	73	140	---	73	---	---
Benzaldehyde $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$	10\%	N	R to 73	73	R to 73	73	C to 73	---	73	R to 104	---
	99\%	---	---	---	---	---	---	---	---	---	C to 73
Benzene $\mathrm{C}_{6} \mathrm{H}_{6}$	--	N	N	N	N	C to 120	N	C to 122	R to 68	---	---

[^1]***May not be fully applicable to pressurized applications***
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Benzene Sulfonic Acid $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$	10\%	---	180	180	140	R to 73	---	---	R to 73	---	---
	10\%+	---	N	---	N	---	---	---	---	---	---
Benzoic Acid $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	all	160	180	73	140	140	140	---	R to 248	---	---
Benzoyl Chloride $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$	Sat. Sol.	---	---	---	---	---	---	C to 68	---	---	---
Benzyl Alcohol $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$	--	---	N	120	N	140	---	R to 122	140	R to 68	---
Benzyl Chloride $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Cl}$	--	---	---	---	---	---	---	---	R to 140	---	---
Bismuth Carbonate $(\mathrm{BiO})_{2} \mathrm{CO}_{3}$	Sat'd.	---	180	180	140	140	140	---	140	---	---
Black Liquor	sat'd	---	180	140	140	120	140	---	120	---	---
Bleach	5\% Active Cl_{2}	---	180	120	140	C to 140	---	---	C to 140	---	R to 73
	12\% Active Cl_{2}	73	185	120	140	73	140	---	73	---	---
$\begin{aligned} & \text { Borax } \\ & \mathrm{Na}_{3} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	sat'd	160	180	212	140	140	140	---	140	---	---
Boric Acid $\mathrm{H}_{3} \mathrm{BO}_{3}$	Sat'd	160	180	212	140	140	140	R to 212	140	---	---
Brake Fluid	--	---	---	140	---	140	---	---	140	---	---
Brine	sat'd	---	180	140	140	140	140	---	140	---	---
Bromic Acid HBrO_{3}	Sat'd	---	180	N	140	N	140	R to 212	N	---	---
	10\%	---	---	---	---	140	---	---	---	---	---
Bromine Br_{2}	Liquid	73	N	N	N	N	N	R to 248	N	N	---
		---	180	N	140	N	---	---	N	---	---
Bromine Water	cold sat'd	---	180	N	140	N	C to 73	R to 176	N	---	---
Bromobenzene $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$	--	---	---	--	N	---	---	---	---	---	---
Bromotoluene (Benzyl bromide) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}$	--	---	---	C	N	---	---	---	---	---	---
Butadiene $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}=\mathrm{CH}_{2}$	50\%	---	180	N	140	73	---	---	73	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications

Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
	Gas	---	---	---	---	---	---	R to 212	---	---	---
Butane $\mathrm{C}_{4} \mathrm{H}_{10}$	50\%	---	180	140	140	140	N	---	140	---	---
	Gas	---	---	---	---	---	---	R to 68	---	---	---
n-Butanol $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$	Liquid	---	---	---	---	---	---	R to 140	---	---	R to 73
Butyl Acetate $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	100\%	N	N	C to 73	N	C to 73	C to 73	C to 104	C to 73	R to 194	---
Butyl Alcohol $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OH}$	--	---	C to 73	180	140	140	140	---	140	C to 104	---
Butyl Cellosolve $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	--	---	N	---	73	---	---	---	---	---	---
$\begin{aligned} & \text { n-Butyl Chloride } \\ & \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl} \end{aligned}$	--	N	N	---	---	---	---	---	---	---	---
$\begin{aligned} & \text { Butyl Glycol } \\ & \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3} \end{aligned}$	Liquid	---	---	---	---	---	---	R to 212	---	---	---
$\begin{aligned} & \text { Butylene © } \\ & \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3} \end{aligned}$	Liquid	---	---	N	140	120	---	---	120	---	---
Butyl Phenol $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}$	--	---	---	N	C to 73	73	73	---	R to 176	---	---
Butyl Phthalate $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}$	--	---	N	180	---	---	---	R to 140	---	---	---
Butyl Stearate $\mathrm{CH}_{3}(\mathrm{CH} 2)_{16} \mathrm{COO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	--	---	---	---	73	---	---	---	---	---	---
$\begin{aligned} & \text { Butynediol } \\ & \mathrm{HOCH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{OH} \end{aligned}$	--	---	---	---	73	---	---	----	---	---	---
Butyric Acid $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	--	N	N	180	73	73	73	---	73	---	---
	20\%	---	---	---	---	---	---	R to 212	---	---	---
	Liquid	---	---	---	---	---	---	R to 176	73	---	---
Cadmium Cyanide $\mathrm{Cd}(\mathrm{CN})_{2}$	--	---	180	---	140	---	---	---	---	---	---
Calcium Bisulfide $\mathrm{Ca}(\mathrm{HS})_{2} \mathrm{O}^{2} \mathrm{H}_{2} \mathrm{O}$	--	---	73	---	N	140	---	---	140	---	---
Calcium Bisulfite $\mathrm{Ca}\left(\mathrm{HSO}_{3}\right)_{2}$	--	---	180	180	140	N	140	---	N	---	---
	Sat'd	---	---	---	---	---	---	R to 248	---	---	---
Calcium Carbonate CaCO_{3}	Sat'd	---	180	180	140	140	140	R to 248	140	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Calcium Chlorate $\mathrm{Ca}\left(\mathrm{ClO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	--	---	180	180	140	140	140	R to 248	140	---	---
Calcium Chloride CaCl_{2}	5\%	---	---	---	---	---	---	---	---	---	R to 176
	Sat'd	120	180	180	140	140	140	R to 248	R to 176	R to 194	---
Calcium Hydroxide$\mathrm{Ca}(\mathrm{OH})_{2}$	--	160	180	180	140	140	140	---	140	---	---
	2\%	---	---	---	--	---	---	---	---	---	R to 73
	30\%	---	---	---	---	R to 140	---	---	R to 140	---	---
Calcium Hypochlorite $\mathrm{Ca}(\mathrm{OCl})_{2}$	30\%	160	180	140	140	140	140	---	140	---	---
	Sat'd	---	---	---	---	---	---	C to 212	---	---	---
Calcium Nitrate $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	--	---	180	180	140	140	140	---	140	---	---
	50\%	---	---	---	---	140	---	R to 212	140	---	---
	Sat'd	---	---	---	---	---	---	R to 176	---	---	---
Calcium Oxide CaO	--	---	180	---	140	140	---	---	140	---	---
Calcium Sulfate CaSO_{4}	--	100	180	180	140	140	140	R to 212	140	---	---
Calcium Hydrogen Sulfide $\mathrm{Ca}(\mathrm{HS})_{2}$	>10\%	--	---	---	---	---	---	R to 248	---	---	---
Camphor $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$	--	N	---	73	73	73	---	---	73	---	---
Cane Sugar Liquors $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$	--	---	180	180	140	140	150	---	140	---	---
$\begin{aligned} & \text { Carbitol } \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH} \end{aligned}$	--	---	N	---	73	---	---	---	---	---	---
Carbon Dioxide CO_{2}	$\begin{gathered} \text { Dry } \\ \text { 100\% } \end{gathered}$	160	180	140	140	140	---	R to 212	140	---	---
	Wet	160	180	140	140	140	140	---	140	---	---
Carbon Disulfide CS_{2}	--	N	N	N	N	C to 140	---	---	R to 68	R to 104	---
Carbon Monoxide CO	Gas	---	180	180	140	140	140	R to 140	140	---	---
Carbon Tetrachloride CCl_{4}	--	N	N	N	73	C to 73	N	C to 212	C to 68	N	R to 73

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Carbonic Acid $\mathrm{H}_{2} \mathrm{CO}_{3}$	Sat'd	185	180	140	140	140	---	---	140	---	---
Castor Oil	--	---	C to 180	140	140	73	140	---	73	---	---
Caustic Potash KOH	50\%	160	180	180	140	140	73	---	140	---	---
Caustic Soda (Sodium Hydroxide) NaOH	40\%	160	180	180	140	140	73	---	140	---	---
Cellosolve	--	---	N	73	73	C to 120	140	---	C to 120	---	---
Cellosolve Acetate $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{OC}_{2} \mathrm{H}_{5}$	--	---	N	73	73	---	---	---	---	---	---
Chloral Hydrate $\mathrm{CCl}_{3} \mathrm{CH}(\mathrm{OH})_{2}$	All	---	180	C to 73	140	120	140	---	120	---	---
Chloramine $\mathrm{NH}_{2} \mathrm{Cl}$	Dilute	---	N	73	73	73	---	---	73	---	--
Chloric acid $\mathrm{HClO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	10\%	---	180	73	140	73	---	---	73	---	---
	20\%	---	185	73	140	73	---	---	73	---	---
Chlorine Gas Cl_{2}	0-20 PPM moisture content	N	C to 73	N	C to 73	C to 73	---	R to 212	C to 73	---	---
	20-50 PPM moisture content	N	N	N	N	C to 73	---	---	C to 73	---	---
	50+ PPM moisture content	N	N	N	N	C to 73	---	N	C to 73	---	---
Chlorine	Liquid	N	N	N	N	N	---	---	N	---	N
Chlorinated Water											
	Sat'd	---	180	180	140	C to 120	140	R to 212	C to 120	---	---
Chloroacetic Acid$\mathrm{CH}_{2} \mathrm{ClCOOH}$	50\%	N	180	C to 73	140	120	N	---	120	---	---
	>10\%	---	---	---	--	---	---	R to 140	---	---	---
Chloroacetyl Chloride $\mathrm{ClCH}_{2} \mathrm{COCl}$	--	---	---	---	73	---	---	---	---	---	---
Chlorobenzene $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	Dry	N	N	73	N	C to 75	N	---	C to 75	---	---
	Liquid	---	---	---	---	---	---	R to 140	R to 68	C to 176	---
Chlorobenzyl Chloride $\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Cl}$	--	---	N	---	N	C to 120	---	---	C to 120	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Chloroethanol $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	Liquid	---	---	---	---	---	N	R to 122	---	---	---
Chloroform CHCl_{3}	Dry	N	N	N	N	C to 75	C to 73	---	C to 75	---	---
	Liquid	---	--	---	---	---	---	R to 212	N	---	C to 73
Chloromethane $\mathrm{CH}_{3} \mathrm{Cl}$	Gas	---	---	---	---	---	---	R to 212	---	---	---
Chloropicrin $\mathrm{CCl}_{3} \mathrm{NO}_{2}$	--	---	---	---	N	73	---	---	73	---	---
Chlorosulfonic Acid$\mathrm{ClSO}_{2} \mathrm{OH}$	--	---	73	N	73	C to 120	N	---	C to 120	---	---
	50\%	---	---	---	---	---	---	R to 68	---	---	---
	100\%	---	---	---	---	N	---	---	N	---	---
Chromic Acid$\mathrm{H}_{2} \mathrm{CrO}_{4}$	Sat'd	---	---	---	---	---	---	R to 212	---	---	---
	10\%	73	180	140	140	73	140	R to 212	73	N	---
	20\%	---	---	---	---	---	---	R to 212	---	---	---
	25\%	---	---	---	---	---	---	R to 212	---	---	---
	30\%	N	180	73	140	73	140	R to 212	73	---	---
	40\%	N	180	73	140	73	73	R to 212	73	---	---
	50\%	N	C to 140	73	N	73	N	R to 212	73	---	---
Chromium Potassium Sulfate$\mathrm{CrK}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$	>10\%	---	---	--	---	---	---	R to 212	---	---	---
	--	-	--	73	---	73	---	---	73	---	---
	Sat'd	---	---	---	---	---	R to 212	---	---	-	---
Citric Acid $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$	Sat'd	160	180	140	140	140	140	R to 248	140	C to 140	---
Coconut Oil	--	---	C to 180	73	140	73	140	R to 248	73	---	---
Cod Liver Oil	Work Sol.	---	---	---	---	---	---	R to 248	---	---	---
Coffee	--	---	180	140	140	140	---	---	140	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Coke Oven Gas	--	---	---	73	140	140	---	---	140	---	---
Copper Acetate $\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	Sat'd	---	73	73	73	---	---	---	---	---	---
Copper Carbonate CuCO_{3}	Sat'd	---	180	---	140	140	---	---	140	---	---
Copper Chloride CuCl_{2}	Sat'd	73	180	140	140	140	140	---	140	---	---
Copper Cyanide CuCN	Sat'd	---	180	---	140	140	140	R to 212	140	---	---
Copper Fluoride $\mathrm{CuF}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	2\%	---	180	73	140	140	140	---	140	---	---
Copper Nitrate $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	30\%	---	180	140	140	140	140	---	---	---	---
	50\%	---	---	---	---	---	---	R to 212	---	---	---
Copper Sulfate $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	Sat'd	120	180	120	140	140	140	R to 212	140	R to 194	---
Corn Oil	--	---	C to 180	73	140	120	---	---	120	---	---
Corn Syrup	--	---	185	140	140	140	---	---	140	---	---
Cottonseed Oil	--	120	C to 180	140	140	R to 140	140	---	R to 140	---	---
Creosote	--	---	N	73	N	140	---	---	140	---	---
$\begin{aligned} & \hline \text { Cresol } \\ & \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH} \end{aligned}$	90\%	N	N	R to 73	N	73	N	R to 68	73	---	---
Cresylic Acid	50\%	---	180	---	140	C to 73	N	---	C to 73	---	---
Crotonaldehyde $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCHO}$	--	---	N	C to 73	N	---	---	---	---	---	---
	Liquid	---	---	---	---	---	---	R to 104	--	---	---
Crude Oil	--	---	C to 180	140	140	C to 120	C to 73	R to 212	C to 120	R to 140	---
Cupric Chloride $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	20\%	---	---	---	---	---	---	---	---	---	R to 73
Cupric Fluoride CuF_{2}	--	---	180	---	140	140	---	---	140	---	---
Cupric Sulfate $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	Sat'd	100	180	73	140	140	---	---	---	---	---
Cuprous Chloride CuCl	Sat'd	70	180	---	140	140	---	--	140	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Cyclohexane $\mathrm{C}_{6} \mathrm{H}_{12}$	--	73	N	N	N	N	---	R to 248	N	C to 140	---
Cyclohexanol $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}$	--	C to 120	N	140	N	73	C to 73	R to 104	73	---	---
Cyclohexanone $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$	Liquid	N	N	73	N	120	N	N	C to 176	C to 140	---
Detergents (Heavy Duty)	--	---	C to 180	180	140	R to 140	---	---	R to 140	---	R to 73
Dextrin (Starch Gum)	Sat'd	---	180	140	140	140	140	---	140	---	---
Dextrose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	Sat'd	---	180	140	140	140	140	---	140	---	---
Diacetone Alcohol $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}$	--	---	N	120	N	---	---	---	---	C to 140	---
Dibutoxyethyl Phthalate $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{6}$	--	---	N	---	N	---	---	---	---	---	---
n-Dibutyl Ether $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OC}_{4} \mathrm{H}_{9}$	--	---	---	---	---	73	---	---	73	---	---
Dibutyl Phthalate $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{COOC}_{4} \mathrm{H}_{9}\right)_{2}$	--	N	N	73	N	73	---	---	73	---	---
Dibutyl Sebacate $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OCO}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{OCOC}_{4} \mathrm{H}_{9}$	--	---	---	73	73	73	--	---	73	---	---
Dichloroacetic Acid $\mathrm{CHCl}_{2} \mathrm{COOH}$	50\%	---	---	---	---	---	---	R to 176	---	---	---
Dichlorobenzene $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$	--	N	N	C to 73	N	C to 120	---	---	C to 120	---	R to 73
	Liquid	---	---	---	---	---	---	R to 140	---	---	---
Dichloroethylene $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$	--	---	N	C to 73	N	C to 120	---	---	C to 120	---	---
	Liquid	---	---	---	---	---	---	R to 248	---	---	---
Diesel Fuels	--	---	C to 180	140	140	73	C to 73	R to 212	73	---	---
Diethanolamine $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2} \mathrm{NH}$	Solid	---	---	---	---	---	---	N	---	---	---
	20\%	---	---	---	---	---	---	---	R to 194	---	---
Diethylamine $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NH}$	--	N	N	---	N	C to 120	N	N	C to 120	---	---
Diethyl Ether $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	--	N	N	73	73	C to 140	---	---	C to 140	140	---
Diglycolic Acid $\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{COOH}\right)_{2}$	Sat'd	---	180	140	140	140	140	---	140	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
	10\%	---	---	---	---	---	---	R to 140	---	---	---
Dimethylamine $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	--	---	---	73	140	73	N	N	73	---	---
Dimethylformamide $\mathrm{HCON}\left(\mathrm{CH}_{3}\right)_{2}$	--	N	N	180	N	120	---	---	120	---	C to 73
	Liquid	---	---	---	---	---	---	---	N	---	---
Dimethylhydrazine $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NNH}_{2}$	--	---	---	---	N	---	---	---	---	---	---
Dimethyl Phthalate $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{COOCH}_{3}\right)_{2}$	--	---	N	---	---	C to 73	---	---	C to 73	---	---
Dioctyl Phthalate $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{COOC}_{8} \mathrm{H}_{17}\right)_{2}$	--	N	N	C to 73	N	73	C to 73	---	73	140	---
Dioxane $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	--	--	N	C to 140	N	140	---	---	140	---	---
	Liquid	---	---	---	---	---	---	C to 68	---	---	---
Diphenyl Oxide $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	Sat'd	---	---	---	---	73	---	---	73	---	---
Disodium Phosphate $\mathrm{Na}_{2} \mathrm{HPO}_{4}$	--	---	180	140	140	140	140	---	140	---	---
Dishwashing Liquid (Cascade®)	--	---	---	---	---	---	---	---	---	---	R to 73
DOWTHERM A	--	---	---	---	N	---	---	---	---	---	---
Ethanol$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	40\%	---	---	---	---	---	---	R to 68	---	---	---
	95\%	---	---	---	---	---	---	R to 122	R to 140	---	---
	Liquid	---	---	---	---	---	---	R to 122	R to 140	---	R to 176
$\begin{aligned} & \hline \text { Ether } \\ & \text { ROR } \end{aligned}$	--	N	N	C to 73	N	73	N	---	73	---	---
Ethyl Acetate$\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$	--	N	N	C to 140	N	73	C to 73	---	73	140	R to 73 C to 176
	Liquid	---	---	---	---	---	---	C to 68	---	---	---
Ethyl Acetoacetate $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$	--	N	N	---	N	---	---	---	---	---	---
Ethyl Acrylate $\mathrm{CH}_{2}=\mathrm{CHCOOC}_{2} \mathrm{H}_{5}$	--	---	N	---	N	---	---	---	---	---	---
$\begin{aligned} & \text { Ethyl Alcohol (Ethanol) } \\ & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \end{aligned}$	--	---	C to 140	140	140	140	140	---	140	C to 104	R to 176

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Ethyl Benzene $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{H}_{5}$	--	---	---	C to 73	N	C to 73	---	---	---	---	---
Ethyl Chloride $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	Dry	---	N	C to 73	N	C to 73	---	---	C to 73	---	---
	Gas	---	---	---	---	---	---	R to 212	---	---	---
Ethyl Chloroacetate $\mathrm{ClCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$	--	---	---	---	N	---	---	---	---	---	---
Ethyl Ether $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	Liquid	---	N	N	N	N	N	R to 122	R to 68	---	---
Ethylene Bromide $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$	Dry	---	N	---	N	---	N	---	---	---	---
Ethylene Chloride (Vinyl Chloride) $\mathrm{CH}_{2} \mathrm{CH} \mathrm{Cl}$	Dry	N	N	C to 73	N	C to 140	---	---	C to 140	---	---
Ethylene Chlorohydrin $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	--	---	N	73	N	---	N	---	---	---	---
	Liquid	---	---	---	---	---	---	C to 68	---	---	---
Ethylene Diamine $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	--	N	---	73	N	140	---	---	140	---	---
Ethylene Dichloride $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$	Dry	N	N	C to 140	N	C to 73	140	---	C to 73	---	---
Ethylene Glycol $\mathrm{OHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	Liquid	73	C to 180	212	140	140	140	R to 212	R to 212	---	C to 176
Ethylene Oxide $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$	--	---	N	C to 73	N	73	---	---	73	C to 140	---
$\begin{aligned} & \text { 2-Ethylhexanol } \\ & \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CHC}_{2} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH} \end{aligned}$	--	---	---	---	---	73	---	---	73	---	---
Fatty Acids $\mathrm{R}-\mathrm{COOH}$	--	160	73	120	140	120	150	---	120	194	---
Ferric Chloride (Aqueous) FeCl_{3}	Sat'd	120	180	140	140	140	150	R to 212	140	---	---
Ferric Hydroxide $\mathrm{Fe}(\mathrm{OH})_{3}$	Sat'd	160	180	140	140	140	---	---	140	---	---
Ferric Nitrate $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$	Sat'd	160	180	140	140	140	140	R to 212	140	---	---
$\begin{aligned} & \text { Ferric Sulfate } \\ & \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \end{aligned}$	--	160	180	140	140	140	140	---	140	---	---
	Sat'd	---	---	---	---	---	---	R to 212	---	---	---
Ferrous Chloride FeCl_{2}	Sat'd	160	180	140	140	140	140	R to 212	140	---	---
Ferrous Hydroxide $\mathrm{Fe}(\mathrm{OH})_{2}$	Sat'd	160	180	140	140	140	---	---	140	---	---

[^2]***May not be fully applicable to pressurized applications***
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Ferrous Nitrate $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$	--	160	180	140	140	140	---	---	140	---	---
Ferrous Sulfate FeSO_{4}	--	160	180	140	140	140	140	---	140	---	---
	20\%	---	---	---	---	---	---	---	---	---	R to 73
	Sat'd	---	---	---	---	---	---	R to 212	---	---	---
Ferrous Chloride FeCl_{2}	Sat'd	160	180	140	140	140	140	R to 212	140	---	---
Fish Oil	---	---	180	180	140	140	140	---	140	---	---
Fluoroboric Acid HBF_{4}	---	73	73	140	140	140	---	---	140	---	---
	Solid	---	---	---	---	---	---	R to 104	---	---	---
$\begin{aligned} & \text { Fluorine Gas (Dry) } \\ & \mathrm{F}_{2} \end{aligned}$	100\%	---	73	N	73	C to 73	C to 73	---	C to 73	N	---
Fluorine Gas (Wet) F_{2}	--	N	73	N	73	N	N	---	N	N	---
Fluorosilicic Acid $\mathrm{H}_{2} \mathrm{SiF}_{6}$	25\%	---	---	---	--	---	---	R to 212	---	---	---
	30\%	---	R to 140	140	140	140	---	R to 212	---	---	---
	40\%	---	---	---	---	---	---	R to 140	---	---	---
	50\%	---	73	73	140	140	140	R to 212	--	---	---
	Sat'd	---	---	---	---	---	---	R to 212	--	--	---
FormaldehydeHCHO	Dilute	160	73	140	140	140	140	R to 176	---	C to 104	---
	35\%	160	C to 73	140	140	140	140	---	140	---	---
	37\%	160	C to 73	140	140	140	140	R to 212	140	---	---
	50\%	---	C to 73	---	140	140	140	---	140	---	---

May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Formic Acid HCOOH	--	N	C to 73	140	73	140	150	---	140	---	---
	10\%	---	---	---	---	---	---	R to 212	R to 140	N	N
	40\%	---	---	---	---	---	---	R to 212	R to 140	---	---
	50\%	---	---	---	---	---	---	R to 176	R to 140	---	---
	85\%	---	---	---	---	---	---	R to 212	---	---	---
	100\%	---	---	---	---	140	---	---	140	---	---
$\begin{aligned} & \text { Freon } 11 \\ & \mathrm{CCl}_{3} \mathrm{~F} \end{aligned}$	100\%	N	73	N	140	73	---	---	73	---	---
$\begin{aligned} & \text { Freon } 12 \\ & \mathrm{CCl}_{2} \mathrm{~F}_{2} \end{aligned}$	100\%	---	73	73	140	73	---	---	73	68	---
	Work. Sol.	---	---	---	---	---	---	R to 212	R to 68	---	---
$\begin{aligned} & \text { Freon 21 } \\ & \mathrm{CHCl}_{2} \mathrm{~F} \end{aligned}$	100\%	---	---	N	N	C to 120	---	---	C to 120	---	---
$\begin{aligned} & \text { Freon } 22 \\ & \mathrm{CHCIF}_{2} \end{aligned}$	100\%	---	73	73	N	C to 120	---	---	C to 120	68	---
$\begin{aligned} & \text { Freon } 113 \\ & \mathrm{C}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{3} \end{aligned}$	100\%	---	---	N	140	73	---	---	73	---	--
$\begin{aligned} & \text { Freon } 114 \\ & \mathrm{C}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{4} \end{aligned}$	100\%	---	---	N	140	73	---	---	73	---	---
Fructose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	Sat'd	73	180	180	140	140	140	---	140	---	---
Fruit Juice	Work. Sol.	---	---	---	---	---	---	R to 212	---	104	---
Furfural $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{OCHO}$	100\%	N	N	N	N	C to 140	---	---	C to 140	C to 140	---
Gallic Acid $\mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{OH})_{3} \mathrm{CO}_{2} \mathrm{H} \cdot \mathrm{H}_{2} \mathrm{O}$	--	---	73	---	140	73	---	---	73	---	---
Gasoline, Leaded*	--	N	N	N	140	73	N	--	73	---	---
Gasoline, Unleaded*	--	N	N	N	140	73	N	---	73	---	R to 176
Gasoline (Fuel)	--	---	---	---	---	---	---	R to 212	---	R to 160	---
Gasohol*	--	N	N	N	140	73	N	---	73	---	---
Gasoline, Sour*	--	N	N	N	140	C to 73	N	---	C to 73	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Gelatin	--	---	180	180	140	140	140	---	140	---	---
Glucose$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$	--	120	180	212	140	140	140	---	140	---	---
	10\%	---	---	---	---	---	---	R to 248	---	---	---
Glue	--	---	---	140	140	140	---	---	140	---	---
$\begin{aligned} & \hline \text { Glycerine } \\ & \mathrm{C}_{3} \mathrm{H}_{5}(\mathrm{OH})_{3} \end{aligned}$	--	140	180	212	140	140	140	---	140	---	---
	Liquid	---	---	---	---	---	---	R to 248	---	---	---
$\begin{aligned} & \hline \text { Glycol } \\ & \mathrm{OHCH}_{2} \mathrm{CH}_{2} \mathrm{OH} \end{aligned}$	--	---	C to 180	212	140	140	---	---	140	C to 140	---
Glycolic Acid $\mathrm{OHCH}_{2} \mathrm{COOH}$	Sat'd	---	180	73	140	140	---	---	140	---	---
	10\%	---	---	---	---	---	---	R to 212	---	---	---
	30\%	---	---	---	---	---	---	R to 140	---	---	---
	65\%	---	---	---	---	---	---	R to 212	---	---	---
Glyoxal OCHCHO	--	---	---	--	---	140	---	---	140	---	---
Grape Sugar	--	---	180	---	140	---	---	--	---	---	---
Grapefruit Juice	Work. Sol.	---	---	---	---	---	---	R to 122	---	---	---
Grease	--	---	---	---	---	---	---	---	---	194	---
Green Liquor	--	160	180	---	140	---	140	---	---	---	---
Heptane (Type 1) $\mathrm{C}_{7} \mathrm{H}_{16}$	--	73	180	N	140	73	N	---	73	---	---
	Liquid	---	---	---	---	---	---	R to 212	C to 176	---	---
n-Hexane $\mathrm{C}_{6} \mathrm{H}_{14}$	--	C	73	73	73	---	---	---	---	---	---
	Liquid	---	---	---	---	---	---	R to 176	---	---	R to 73
Hexanol, Tertiary Type I $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{OH}$	--	---	180	---	140	140	140	---	140	---	---
Hydraulic Oil (Petroleum)	--	---	---	---	73	73	---	---	73	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Hydrazine $\mathrm{H}_{2} \mathrm{NNH}_{2}$	--	---	N	73	N	---	---	---	---	---	---
Hydrobromic Acid HBr	20\%	73	73	140	140	140	140	R to 212	140	---	---
	50\%	N	---	120	---	140	---	R to 140	140	---	---
	66\%	---	---	---	---	---	---	R to 212	---	---	---
Hydrochloric Acid HCl	1\%	---	---	---	---	---	---	---	--	---	R to 176
	10\%	C to 120	180	140	140	140	140	R to 212	R to 212	C to 104	N
	20\%	---	---	---	---	---	---	R to 212	R to 212	---	---
	30\%	C to 73	180	140	140	140	140	R to 212	R to 140	---	---
	Conc.	---	---	---	---	---	---	---	R to 140	---	---
Hydrocyanic Acid HCN	--	160	180	73	140	140	140	---	140	---	---
	Sat'd	---	---	---	---	---	---	R to 248	---	---	---
	10\%	---	---	---	--	---	---	R to 248	---	---	---
Hydrofluoric Acid HF	Dilute	73	73	180	73	140	140	R to 212	140	---	---
	30\%	N	73	140	73	140	140	---	140	---	---
	40\%	---	---	---	---	---	---	R to 212	---	---	---
	50\%	N	N	73	73	120	140	R to 212	120	---	---
	60\%	---	---	---	---	140	---	R to 140	140	---	---
	70\%	---	---	---	---	---	---	R to 212	---	---	---
	100\%	N	N	C to 73	N	120	---	---	120	---	---
	Gas	---	---	---	---	---	---	R to 104	---	---	---
$\begin{aligned} & \text { Hydrogen } \\ & \mathrm{H}_{2} \end{aligned}$	Gas	---	73	140	140	140	140	R to 248	140	194	---
Hydrogen Cyanide HCN	--	---	---	73	140	---	---	---	---	---	---

May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Hydrogen Fluoride, Anhydrous HF	--	---	C	73	N	---	---	---	---	---	---
Hydrogen Peroxide $\mathrm{H}_{2} \mathrm{O}_{2}$	3\%	---	---	---	---	---	---	---	---	---	R to 73
	10\%	---	---	---	---	---	---	R to 212	---	---	--
	30\%	---	---	---	---	---	---	R to 212	---	C to 104	---
	50\%	---	180	73	140	140	N	R to 212	140	---	---
	90\%	---	180	C to 73	140	73	N	---	73	---	---
Hydrogen Phosphide (Type I) PH_{3}	--	---	73	---	140	140	140	---	140	---	---
Hydrogen Sulfide $\mathrm{H}_{2} \mathrm{~S}$	Dry	---	180	150	140	140	140	R to 248	140	---	---
	Wet	---	180	---	140	140	---	---	140	---	---
Hydrogen Sulfite $\mathrm{H}_{2} \mathrm{SO}_{3}$	10\%	---	---	---	---	140	---	R to 248	140	---	---
Hydroquinone $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}$	Sat'd	---	180	---	140	140	140	---	---	140	---
Hydroxylamine Sulfate $\left(\mathrm{NH}_{2} \mathrm{OH}\right) \mathrm{oH}_{2} \mathrm{SO}_{4}$	--	---	180	---	140	140	---	---	140	---	---
Hypochlorous Acid HOCl	10\%	73	180	73	140	140	140	---	140	---	---
	70\%	---	---	---	---	---	---	R to 212	---	---	---
Inks	--	---	---	140	---	140	---	---	140	---	---
Iodine I_{2}	10\%	N	73	73	N	C to 120	N	R to 176	C to 120	---	---
Isobutyl Alcohol $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}$	--	C to 73	C to 73	73	---	140	---	---	140	---	---
Isooctane$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	--	---	---	C to 73	---	73	---	---	73	---	---
	Liquid	---	---	---	---	---	---	R to 212	---	---	---
Isopropyl Acetate $\mathrm{CH}_{3} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2}$	--	N	N	---	---	73	---	---	73	---	---
Isopropyl Alcohol $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$	--	---	C to 180	212	140	140	140	C to 212	140	---	R to 73
Isopropyl Ether $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOCH}\left(\mathrm{CH}_{3}\right)_{2}$	--	---	N	C to 73	N	73	---	---	73	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications

Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
JP-4 Fuel*	--	---	C to 73	C to 73	140	73	---	---	73	---	---
JP-5 Fuel*	--	---	C to 73	C to 73	140	73	---	---	73	---	--
Kerosene*	--	73	73	C to 140	140	C to 140	C to 73	---	C to 140	---	---
Ketchup	--	---	---	---	73	---	---	---	---	---	---
Ketones	--	N	N	C to 73	N	73	---	---	73	---	---
	Work Sol	---	---	---	---	---	---	---	R to 302	--	---
Kraft Liquors	--	73	180	---	140	120	140	---	120	---	---
Lactic Acid $\mathrm{CH}_{3} \mathrm{CHOHCOOH}$	10\%	---	---	---	---	---	---	R to 140	---	---	---
	20\%	---	---	---	---	---	---	---	---	---	R to 73
	25\%	73	180	212	140	140	140	---	140	---	---
	80\%	N	C to 180	140	73	140	---	---	140	---	---
	Liquid	---	---	---	---	---	---	R to 212	---	R to 194	---
Lard Oil	--	---	C to 180	---	140	C to 120	73	---	C to 120	---	---
Latex	--	---	---	140	---	140	---	---	140	---	---
Lauric Acid $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{COOH}$	--	---	180	140	140	120	---	---	120	---	---
Lauryl Chloride (Type I) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{2} \mathrm{Cl}$	--	---	73	---	140	120	73	R to 248	120	---	---
Lead Acetate $\mathrm{Pb}\left(\mathrm{C} \mathrm{H}_{3} \mathrm{COO}\right)_{2} \mathrm{o}_{3} \mathrm{H}_{2} \mathrm{O}$	Sat'd	---	180	180	140	140	140	R to 212	140	---	---
Lead Chloride PbCl_{2}	--	---	180	140	140	120	---	---	120	---	---
Lead Nitrate $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	Sat'd	---	180	140	140	120	---	---	120	---	---
Lead Sulfate PbSO_{4}	--	---	180	140	140	120	---	---	120	---	---
Lead Tetraethyl $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~Pb}$	--	---	---	---	---	---	---	R to 212	---	---	---
Lemon Oil	--	---	N	C to 73	---	---	---	---	---	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Lemon Juice	--	---	---	---	---	C to 140	---	---	C to 140	---	---
Ligroin	--	---	---	140	---	---	---	---	---	---	---
Lime Slurry	--	---	---	---	---	140	---	---	140	---	---
Lime Sulfur	--	---	73	73	73	120	140	---	120	---	---
$\begin{aligned} & \hline \text { Linoleic Acid } \\ & \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4}\left(\mathrm{CH}=\mathrm{CHCH}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \\ & \mathrm{COOH} \end{aligned}$	--	---	180	180	140	---	73	---	---	---	---
Linoleic Oil (Type I)	--	---	---	---	140	---	73	---	---	---	---
Linseed Oil	--	73	C to 180	140	140	R to 73	73	R to 248	R to 73	194	---
Liqueurs	--	---	---	140	140	120	140	---	120	---	---
Lithium Bromide LiBr	--	---	---	140	140	140	---	---	140	---	---
Lithium Chloride LiCl	--	---	---	140	140	120	---	---	120	---	---
Lithium Hydroxide LiOH	--	---	---	140	---	120	---	---	120	---	---
Lubricating Oil (ASTM \#1)	--	---	180	C to 140	140	73	140	R to 248	73	---	---
Lubricating Oil (ASTM \#2)	--	---	180	C to 140	140	73	140	---	73	---	---
Lubricating Oil (ASTM \#3)	--	---	180	C to 140	140	73	140	---	73	---	---
Magnesium Carbonate MgCO_{3}	--	120	180	212	140	140	140	R to 212	140	---	---
Magnesium Chloride MgCl_{2}	Sat'd	120	180	140	140	140	140	R to 140	140	---	--
	50\%	--	---	---	---	---	---	R to 212	----	194	---
Magnesium Citrate $\mathrm{MgHC}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{o}^{5} \mathrm{H}_{2} \mathrm{O}$	--	---	180	---	140	140	---	---	140	---	---
Magnesium Hydroxide $\mathrm{Mg}(\mathrm{OH})_{2}$	Sat'd	160	180	180	140	140	140	R to 212	140	---	---
Magnesium Nitrate $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \mathrm{O}_{2} \mathrm{H}_{2} \mathrm{O}$	--	160	180	212	140	140	140	R to 248	140	---	---
Magnesium Oxide MgO	--	160	---	---	---	---	---	---	---	---	---
Magnesium Sulfate $\mathrm{MgSO}_{4} \circ 7 \mathrm{H}_{2} \mathrm{O}$	--	160	180	212	140	140	140	R to 212	140	---	---

[^3]***May not be fully applicable to pressurized applications***
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX
Maleic Acid HOOCCH CHCOOH	Sat'd	160	180	140	140	140	140	R to 140	140

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Methyl Butyl Ketone $\mathrm{CH}_{3} \mathrm{CO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	Liquid	---	---	---	---	---	---	C to 122	---	---	---
Methyl Cellosolve $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$	--	---	N	73	N	C to 120	---	---	C to 120	---	---
Methyl Chloride $\mathrm{CH}_{3} \mathrm{Cl}$	Dry	N	N	N	N	C to 120	N	---	C to 120	R to 68	---
Methyl Chloroform $\mathrm{CH}_{3} \mathrm{CCl}_{3}$	--	N	N	C to 73	N	C to 120	---	---	C to 120	---	---
Methyl Ethyl Ketone (MEK) $\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$	100\%	N	N	73	N	N	73	C to 68	R to 140	C to 140	R to 73 C to 176
Methyl Isobutyl Carbinol $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}$	--	---	N	---	N	---	---	---	---	---	---
Methyl Isobutyl Ketone $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{COCH}_{3}$	--	N	N	73	N	73	---	---	73	---	---
Methyl Isopropyl Ketone $\mathrm{CH}_{3} \mathrm{COCH}\left(\mathrm{CH}_{3}\right)_{2}$	--	---	N	---	N	73	---	---	73	---	---
Methyl Methacrylate $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOCH}_{3}$	--	---	N	---	73	140	---	R to 68	140	---	---
Methyl Sulfate $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}$	--	---	73	C to 73	73	140	---	---	---	68	---
Methylene Bromide $\mathrm{CH}_{2} \mathrm{Br}_{2}$	--	---	N	N	N	C to 120	---	---	C to 120	---	---
Methylene Chloride $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100\%	---	N	N	N	N	73	C to 104	N	---	C to 176
Methylene Chlorobromide $\mathrm{CH}_{2} \mathrm{ClBr}$	--	---	N	--	N	---	---	---	---	---	---
Methylene Iodide $\mathrm{CH}_{2} \mathrm{I}_{2}$	--	---	N	N	N	C to 120	---	---	C to 120	---	---
MethyIsulfuric Acid $\mathrm{CH}_{3} \mathrm{HSO}_{4}$	--	---	180	140	140	---	---	---	---	---	---
Milk	--	160	180	212	140	140	140	R to 212	140	194	---
Mineral Oil	--	73	180	C to 140	140	R to 73	C to 73	R to 212	C to 176	---	---
Molasses	--	---	180	140	140	140	140	---	140	---	---
Monochloroacetic Acid $\mathrm{CH}_{2} \mathrm{ClCOOH}$	50\%	---	---	140	140	140	---	---	140	---	---
Monochlorobenzene $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	Tech Pure	---	N	73	N	C to 120	---	---	C to 120	---	---
Monoethanolamine $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	--	---	---	---	N	---	---	---	---	---	---
Motor Oil	--	---	180	C to 140	140	R to 140	---	---	R to 140	---	---

May not be fully applicable to pressurized applications

Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Morpholine $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{ONH}$	--	---	---	140	---	140	---	---	140	---	---
Mustard, Aqueous	Work. Sol.	---	---	---	---	---	---	R to 248	---	---	---
N-methyl Pyrrolidone $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}$	100\%	---	---	---	---	---	---	---	---	---	C to 73
Naphtha	--	---	73	73	140	73	73	R to 122	C to 176	R to 140	---
Naphthalene $\mathrm{C}_{10} \mathrm{H}_{8}$	--	---	N	73	N	73	73	---	73	R to 194	---
Natural Gas	--	73	---	73	140	140	73	---	140	---	---
Nickel Acetate $\mathrm{Ni}\left(\mathrm{OOCCH}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	--	---	---	73	---	140	---	---	140	---	---
Nickel Chloride NiCl_{2}	Sat'd	160	180	180	140	140	140	R to 212	140	---	---
Nickel Nitrate $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \mathrm{obH}_{2} \mathrm{O}$	Sat'd	160	180	180	140	140	140	R to 248	140	---	---
Nickel Sulfate NiSO_{4}	Sat'd	160	180	180	140	140	140	R to 212	140	---	---
Nicotine $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$	--	---	180	---	140	140	140	---	140	---	---
Nicotinic Acid $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NCOOH}$	--	---	180	---	140	140	140	R to 212	140	---	---

May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Nitric Acid HNO_{3}	5\%	---	---	---	---	---	---	R to 176	C to 140	N	---
	10\%	C to 73	180	180	140	73	C to 73	R to 212	C to 140	---	---
	20\%	-	---	---	---	---	---	R to 212	C to 140	---	---
	25\%	---	---	---	---	---	---	R to 212	C to 140	---	---
	30\%	N	R to 130	140	140	73	N	R to 212	C to 140	---	---
	35\%	---	---	---	---	---	---	---	C to 140	---	---
	40\%	N	R to 120	73	140	73	N	C to 248	140	---	---
	50\%	N	110	N	100	C to 73	N	---	140	---	---
	65\%	---	---	---	---	---	---	C to 248	---	---	---
	70\%	N	100	N	73	C to 73	N	---	C to 73	---	---
	85\%	---	---	---	---	---	---	N	---	---	---
	95\%	---	---	---	--	---	N	---	---	---	---
	100\%	N	N	N	N	N	N	---	N	---	---
Nitrobenzene $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	100\%	N	N	$\begin{aligned} & \text { C to } \\ & 140 \end{aligned}$	N	N	---	R to 122	N	---	---
Nitroglycerine $\mathrm{CH}_{2} \mathrm{NO}_{3} \mathrm{CHNO}_{3} \mathrm{CH}_{2} \mathrm{NO}_{3}$	--	---	---	---	N	73	---	---	73	---	---
Nitroglycol $\mathrm{NO}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NO}_{3}$	--	---	---	---	N	---	---	---	---	--	---
Nitrous Acid HNO_{2}	10\%	---	180	C to 73	140	73	---	---	73	---	---
Nitrous Oxide $\mathrm{N}_{2} \mathrm{O}$	--	---	73	73	73	73	---	---	73	---	--
n-Octane $\mathrm{C}_{8} \mathrm{H}_{18}$	--	---	C to 73	---	---	---	---	---	---	---	---
Oleic Acid $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7}$ COOH	--	160	180	73	140	C to 140	150	R to 248	C to 140	R to 140	---
$\begin{aligned} & \text { Oleum } \\ & \mathrm{xH}_{2} \mathrm{SO}_{4} \mathrm{oySO}_{3} \end{aligned}$	--	N	N	N	N	N	N	N	N	---	--
Olive Oil	--	160	C to 180	73	140	140	---	R to 248	R to 68	---	---

May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Oxalic Acid $\mathrm{HOOCCOOHo} 2 \mathrm{H}_{2} \mathrm{O}$	50\%	160	180	140	140	140	140	---	140	---	---
	10\%	---	---	---	---	---	---	R to 140	---	R to 140	---
	Sat'd	---	---	---	---	---	---	R to 122	---	---	---
Oxygen Gas O_{2}	--	160	180	N	140	140	---	R to 212	140	R to 140	---
OzoneO_{3}	--	---	180	C to 73	140	C to 120	---	---	C to 120	C to 68	---
	Sat'd	---	---	---	---	---	---	R to 68	---	---	---
Palm Oil	--	---	---	73	---	140	---	---	140	---	---
Palmitic Acid $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{COOH}$	10\%	73	73	180	140	120	150	---	120	---	---
	70\%	---	73	180	73	120	---	---	120	---	---
Paraffin $\mathrm{C}_{36} \mathrm{H}_{74}$	--	73	180	140	140	C to 140	---	R to 212	C to 140	---	---
Peanut Oil	--	---	C to 180	140	---	---	---	R to 248	---	---	---
n-Pentane $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	--	N	C to 180	N	C to 140	C to 120	---	---	C to 120	---	--
Peracetic Acid $\mathrm{CH}_{3} \mathrm{COOOH}$	40\%	N	---	73	73	---	---	---	---	---	---
$\begin{aligned} & \text { Perchloric Acid (Type I) } \\ & \mathrm{HClO}_{4} \end{aligned}$	10\%	---	---	---	---	---	---	R to 212	---	---	---
	20\%	---	---	---	---	---	---	R to 212	---	---	---
	15\%	---	180	140	73	140	C to 73	---	140	---	---
	70\%	73	180	C to 73	73	73	N	R to 212	73	---	---
Perchloroethylene (tetrachloroethylene) $\mathrm{Cl}_{2} \mathrm{C}=\mathrm{CCl}_{2}$	--	N	N	C to 73	C to 140	C to 120	---	C to 212	C to 120	C to 68	---
Perphosphate	--	---	73	140	73	---	---	---	---	---	---
Petroleum Ether	--	---	---	---	---	---	---	R to 212	---	---	---

May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
$\begin{aligned} & \hline \hline \text { Phenol } \\ & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \end{aligned}$	--	N	73	73	73	140	73	---	140	N	---
	5\%	---	---	---	---	---	---	---	R to 248	---	---
	50\%	---	---	---	---	---	---	R to 176	---	---	---
	90\%	--	---	---	---	R to 140	---	---	R to 140	---	---
	Solid	---	---	---	---	---	---	C to 122	---	---	---
Phenylhydrazine $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHNH}_{2}$	--	---	N	N	N	C to 120	---	R to 104	C to 120	---	---
Phenylhydrazine Hydrochloride $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHNH}_{2} \cdot \mathrm{HCl}$	10\%	---	---	---	---	---	---	R to 140	---	---	---
Phosphine PH_{3}	Gas	---	---	---	---	---	---	R to 104	---	---	---
Phosphoric Acid $\mathrm{H}_{3} \mathrm{PO}_{4}$	10\%	---	180	212	140	140	140	---	140	---	---
	50\%	73	180	212	140	140	73	R to 212	140	C to 104	---
	75\%	---	---	--	---	---	---	R to 212	---	---	---
	85\%	---	180	212	140	73	---	C to 284	73	---	---
	98\%	---	---	---	---	---	---	R to 212	---	---	---
Phosphoric Anhydride $\mathrm{P}_{2} \mathrm{O}_{5}$	--	---	73	73	73	---	---	---	---	---	---
Phosphorous (Red)	--	---	---	---	73	140	---	---	140	---	---
Phosphorous (Yellow)	--	--	---	---	73	140	---	---	140	---	---
Phosphorus Oxychloride POCl_{3}	Liquid	---	---	---	---	---	---	R to 68	---	---	---
Phosphorus Pentoxide $\mathrm{P}_{2} \mathrm{O}_{5}$	--	---	73	73	73	140	---	---	140	---	---
Phosphorus Trichloride PCl_{3}	--	--	N	73	N	120	C to 73	C to 122	120	---	---
Photographic Solutions	--	---	180	140	140	140	140	---	140	---	---
Phthalic Acid $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})_{2}$	--	---	---	140	C to 140	140	---	---	140	---	---
	Susp.	---	---	---	---	---	---	R to 212	---	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Picric Acid $\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{NO}_{2}\right)_{3} \mathrm{OH}$	10\%	N	N	73	N	73	73	R to 212	73	C to 68	---
	50\%	---	---	---	---	---	---	R to 212	---	---	---
	Sat'd.	---	---	---	---	---	---	R to 212	---	---	---
Pine Oil	--	---	N	140	---	R to 73	---	---	R to 73	---	---
Plating Solutions (Brass)	--	---	180	140	140	140	C to 73	---	140	---	---
Plating Solutions (Cadmium)	--	---	180	140	140	140	C to 73	---	140	---	---
Plating Solutions (Chrome)	--	---	180	140	140	140	C to 73	---	140	---	---
Plating Solutions (Copper)	--	---	180	140	140	140	C to 73	---	140	---	---
Plating Solutions (Gold)	--	---	180	140	140	140	C to 73	---	140	---	---
Plating Solutions (Lead)	--	---	180	140	140	140	C to 73	---	140	---	---
Plating Solutions (Nickel)	--	---	180	140	140	140	C to 73	---	140	---	---
Plating Solutions (Rhodium)	--	---	180	140	140	140	C to 73	---	140	---	---
Plating Solutions (Silver)	--	---	180	140	140	140	C to 73	---	140	---	---
Plating Solutions (Tin)	--	---	180	140	140	140	C to 73	---	140	---	---
Plating Solutions (Zinc)	--	---	180	140	140	140	C to 73	---	140	---	---
$\begin{aligned} & \text { Potash (Aq) } \\ & \text { KOH } \end{aligned}$	Sat'd	---	180	---	140	140	---	---	140	---	---
Potassium Alum AIK $\left(\mathrm{SO}_{4}\right)_{2} \mathrm{ob}^{2} \mathrm{H}_{2} \mathrm{O}$	--	---	180	---	140	140	---	---	140	---	---
Potassium Aluminum Sulfate AIK $\left(\mathrm{SO}_{4}\right)_{2} \mathrm{o}_{12 \mathrm{H}_{2} \mathrm{O}}$	--	---	180	180	140	---	C to 73	---	---	---	---
Potassium Amyl Xanthate $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OC}(=\mathrm{S})$-S.K	--	---	---	---	73	---	---	---	---	---	---
Potassium Bicarbonate KHCO_{3}	Sat'd	---	180	140	140	140	140	R to 212	140	---	---
Potassium Bi- chromate $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	Sat'd	---	180	140	140	---	C to 73	R to 212	---	---	---
	40\%	---	---	---	---	---	---	R to 212	---	---	---

May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Potassium Bisulfate KHSO_{4}	--	---	180	212	140	140	---	R to 212	140	---	---
Potassium Borate $\mathrm{K}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} 04 \mathrm{H}_{2} \mathrm{O}$	--	--	180	140	140	140	140	R to 212	140	---	---
Potassium Bromate KBrO_{3}	--	---	180	212	140	140	140	R to 212	140	---	---
	10\%	---	---	---	---	---	---	---	R to 212	---	---
Potassium Bromide KBr	--	---	180	212	140	140	140	R to 248	140	---	---
Potassium Carbonate $\mathrm{K}_{2} \mathrm{CO}_{3}$	--	73	180	180	140	140	140	N	140	---	---
Potassium Chlorate (Aqueous) KClO_{3}	--	160	180	212	140	140	140	N	140	---	---
Potassium Chloride KCl	--	160	180	212	140	140	140	R to 212	140	---	---
Potassium Chromate $\mathrm{K}_{2} \mathrm{CrO}_{4}$	--	---	180	212	140	140	140	---	140	---	---
Potassium Cyanide KCN	--	---	180	180	140	140	140	R to 212	140	---	---
Potassium Dichromate $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	Sat'd	--	180	180	140	140	140	---	140	---	---
Potassium Ethyl Xanthate $\mathrm{KS}_{2} \mathrm{COC}_{2} \mathrm{H}_{5}$	--	---	---	---	73	---	---	---	---	---	---
Potassium Ferricyanide $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$	--	---	180	180	140	140	140	R to 248	140	---	---
Potassium Ferrocyanide $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \mathrm{o}^{3} \mathrm{H}_{2} \mathrm{O}$	--	--	180	180	140	140	---	R to 248	140	---	---
Potassium Fluoride KF	--	---	180	180	140	140	140	R to 212	140	---	---
Potassium Hydroxide KOH	4\%	---	---	---	---	---	---	C to 104	---	---	---
	10\%	---	---	---	---	---	---	R to 176	---	---	---
	20\%	---	---	---	---	---	---	R to 176	---	---	---
	25\%	160	180	212	140	R to 140	140	---	R to 140	---	---
	45\%	---	---	---	---	---	---	---	---	---	R to 73
	50\%	---	---	---	---	---	---	R to 176	---	C to 104	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Potassium hydrogen Sulfite KHSO_{3}	10\%	---	---	---	---	---	---	R to 140	---	---	---
	Sat'd	---	---	---	---	---	---	R to 212	---	---	---
Potassium Hypochlorite KClO	--	160	180	---	140	120	---	---	120	--	---
	3\%	---	---	---	---	---	---	R to 212	---	---	---
Potassium lodide KI	--	---	180	73	73	140	---	R to 212	140	---	---
Potassium Nitrate KNO_{3}	--	160	180	140	140	140	140	---	140	C to 104	---
	50\%	---	---	---	---	---	---	R to 212	---	---	---
Potassium Orthophosphate $\mathrm{H}_{2} \mathrm{KPO}_{4}$	Sat'd	---	---	--	---	---	---	R to 212	---	---	---
Potassium Perborate KBO_{3}	--	---	180	140	140	140	140	---	140	---	---
Potassium Perchlorate KClO_{4}	--	---	180	140	140	140	140	---	140	---	---
Potassium Permanganate KMnO_{4}	10\%	---	180	73	140	140	140	R to 176	140	---	---
	20\%	---	---	---	---	---	---	R to 212	---	---	---
	25\%	---	180	73	73	140	---	---	140	---	---
	30\%	---	---	---	---	---	---	R to 212	---	---	---
	Sat'd	---	---	---	---	---	---	R to 212	---	---	---
Potassium Persulfate $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	--	---	180	140	140	140	140	R to 176	140	---	---
Potassium Sulfate $\mathrm{K}_{2} \mathrm{SO}_{4}$	--	160	180	180	140	140	140	R to 212	140	194	---
Potassium Sulfide $\mathrm{K}_{2} \mathrm{~S}$	--	---	180	140	---	140	140	68	140	---	--
Potassium Sulfite $\mathrm{K}_{2} \mathrm{SO}_{3} \mathrm{o}^{2} \mathrm{H}_{2} \mathrm{O}$	--	---	180	140	---	140	---	---	140	---	---
$\begin{aligned} & \hline \text { Propane } \\ & \mathrm{C}_{3} \mathrm{H}_{8} \end{aligned}$	--	---	73	73	140	140	73	R to 248	140	140	---
Propargyl Alcohol $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{OH}$	--	---	C to 180	140	140	140	140	---	140	---	---
Propionic Acid $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$	--	N	N	140	---	140	---	R to 140	140	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
$\begin{aligned} & \hline \hline \text { Propyl Alcohol (Type I) } \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \end{aligned}$	--	73	C to 73	140	140	R to 140	140	R to 122	R to 140	---	---
Propylene Carbonate $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$	100\%	---	---	---	---	---	---	---	---	---	R to 73
Propylene Dichloride $\mathrm{CH}_{3} \mathrm{CHClCH}_{2} \mathrm{Cl}$	100\%	---	N	N	N	N	---	---	N	---	---
Propylene Oxide $\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{O}$	--	---	N	73	N	140	---	---	140	---	---
$\begin{aligned} & \hline \text { Pyridine } \\ & \mathrm{N}(\mathrm{CH})_{4} \mathrm{CH} \end{aligned}$	--	---	N	C to 140	N	73	---	R to 68	73	C to 68	---
Pyrogallic Acid $\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{3}$	--	---	---	---	73	--	--	---	---	---	---
Quinone $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}$	--	---	---	140	---	140	---	---	140	--	---
Rayon Coagulating Bath	--	---	180	---	140	140	140	---	140	---	---
Salicylaldehyde $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OHCHO}$	--	---	---	73	N	120	---	---	120	--	---
Salicylic Acid $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})(\mathrm{COOH})$	--	---	---	140	140	140	---	R to 212	140	---	---
Selenic Acid Aq. $\mathrm{H}_{2} \mathrm{SeO}_{4}$	--	---	180	---	140	140	140	---	140	---	---
Silicic Acid SiO_{2} onH2 O	--	---	180	140	140	140	140	R to 212	140	---	---
Silicone Oil	--	---	180	212	73	73	---	---	73	---	---
Silver Acetate $\mathrm{AgCH}_{3} \mathrm{COO}$	Sat'd	---	---	---	---	---	---	R to 212	---	---	---
Silver Chloride AgCl	--	160	180	140	140	---	---	---	---	---	---
Silver Cyanide AgCN	--	---	180	180	140	140	140	R to 212	140	---	---
Silver Nitrate AgNO_{3}	--	160	180	180	140	R to 140	C to 73	---	R to 140	---	---
	50\%	---	---	---	---	---	---	R to 212	---	---	---
Silver Sulfate $\mathrm{Ag}_{2} \mathrm{SO}_{4}$	--	160	180	140	140	140	C to 73	---	140	---	---
Soaps	--	73	180	140	140	R to 140	140	---	R to 140	---	---
Sodium Acetate $\mathrm{CH}_{3} \mathrm{COONa}$	Sat'd	---	180	212	140	140	140	R to 212	140	---	---
Sodium Alum $\mathrm{AlNa}\left(\mathrm{SO}_{4}\right)_{2} \mathrm{O}_{12 \mathrm{H}_{2} \mathrm{O}}$	--	---	180	---	140	---	--	---	---	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Sodium Aluminate $\mathrm{Na}_{2} \mathrm{Al}_{2} \mathrm{O}_{4}$	Sat'd	---	---	---	140	---	---	---	---	---	---
Sodium Benzoate $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$	--	---	180	140	140	140	140	---	140	---	---
	35\%	---	---	---	---	---	---	R to 68	---	---	---
	50\%	---	---	---	---	---	---	R to 212	---	---	---
Sodium Bicarbonate NaHCO_{3}	--	73	180	212	140	140	140	R to 212	140	---	---
Sodium Bisulfate NaHSO_{4}	--	73	180	140	140	140	140	---	140	---	---
	50\%	---	---	---	---	---	---	R to 212	---	---	---
Sodium Bisulfite NaHSO_{3}	--	---	180	140	140	140	---	---	140	---	---
$\begin{aligned} & \text { Sodium Borate (Borax) } \\ & \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \mathrm{o}_{10} \mathrm{H}_{2} \mathrm{O} \end{aligned}$	Sat'd	160	180	180	140	140	140	---	140	---	---
Sodium Bromide NaBr	Sat'd	120	180	140	140	140	140	---	140	---	---
	50\%	---	---	---	---	---	---	R to 248	---	---	---
Sodium Carbonate $\mathrm{Na}_{2} \mathrm{CO}_{3}$	--	73	180	212	140	140	140	N	140	R to 140	---
Sodium Chlorate NaClO_{3}	Sat'd	---	180	140	73	140	140	N	140	---	---
Sodium Chloride NaCl	---	120	180	212	140	140	140	---	140	---	---
	Sat'd	---	---	---	---	---	---	R to 212	---	194	---
	10\%	---	---	---	---	---	---	R to 212	---	---	R to 176
Sodium Chlorite NaClO_{2}	25\%	---	180	73	N	140	---	--	140	---	---
Sodium Chromate $\mathrm{Na}_{2} \mathrm{CrO}_{4} \mathrm{O} 4 \mathrm{H}_{2} \mathrm{O}$	--	120	180	140	---	140	--	R to 176	140	---	---
Sodium Cyanide NaCN	--	---	180	180	140	140	140	R to 212	140	---	---
Sodium Dichromate$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \mathrm{o}^{2} \mathrm{H}_{2} \mathrm{O}$	Sat'd	---	180	---	140	---	---	---	---	---	---
	20\%	---	180	180	140	140	140	---	140	---	---
	50\%	---	---	---	---	---	---	R to 212	---	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Sodium Ferricyanide $\mathrm{Na}_{3} \mathrm{Fe}(\mathrm{CN})_{6} \mathrm{O}_{2} \mathrm{H}_{2} \mathrm{O}$	Sat'd	---	180	140	140	140	140	---	140	---	---
Sodium Ferrocyanide $\mathrm{Na}_{3} \mathrm{Fe}(\mathrm{CN})_{6} \mathrm{o10H}_{2} \mathrm{O}$	Sat'd	---	180	140	140	140	140	---	140	---	---
Sodium Fluoride NaF	--	120	180	180	140	140	140	R to 212	140	---	---
Sodium Hydrogen Sulfite NaHSO_{3}	50\%	---	---	---	---	---	---	R to 212	---	---	---
Sodium Hydroxide NaOH	1\%	---	---	---	---	---	---	---	R to 140	---	---
	5\%	-	---	---	---	---	---	C to 68	---	---	---
	15\%	120	180	212	140	140	140	---	R to 140	---	---
	30\%	120	180	212	140	R to 140	140	N	R to 140	---	---
	40\%	---	---	---	---	---	---	---	R to 140	---	---
	50\%	120	180	212	140	140	140	--	140	C to 104	---
	60\%	---	--	---	---	---	---	---	R to 140	---	---
	70\%	120	180	212	140	140	140	---	140	---	---
Sodium Hypochlorite $\mathrm{NaOClo} 5 \mathrm{H}_{2} \mathrm{O}$	--	120	180	73	73	140	140	---	140	---	N
	2\% Cl	---	---	---	---	---	---	R to 212	---	---	---
	$12.5 \% \mathrm{Cl}$	---	---	---	---	---	---	R to 68	---	---	---
Sodium Iodide NaI	--	---	180	---	140	---	---	---	---	---	---
Sodium Metaphosphate $\left(\mathrm{NaPO}_{3}\right) \mathrm{n}$	--	---	180	120	140	---	--	---	---	---	---
Sodium Nitrate NaNO_{3}	Sat'd	160	180	180	140	140	140	R to 212	140	---	---
Sodium Nitrite NaNO_{2}	--	160	180	73	140	140	140	R to 212	140	---	---
Sodium Palmitate $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{COONa}$	5\%	---	180	140	140	---	---	---	---	---	---
Sodium Perborate $\mathrm{NaBO}_{3} \circ 4 \mathrm{H}_{2} \mathrm{O}$	--	120	180	73	140	73	---	---	73	---	---
Sodium Perchlorate NaClO_{4}	--	---	180	212	140	140	---	---	140	---	---

May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Sodium Peroxide $\mathrm{Na}_{2} \mathrm{O}_{2}$	10\%	---	180	---	140	140	---	---	140	---	---
Sodium Phosphate$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	Acid	120	180	212	140	140	140	R to 140	140	---	---
	Alkaline	---	120	180	212	140	140	---	140	---	---
	Neutral	---	120	180	212	140	140	---	R to 212	---	---
Sodium Silicate $2 \mathrm{Na}_{2} \mathrm{OoSiO}_{2}$	--	---	180	140	140	140	140	---	140	---	---
	10\%	---	---	---	---	---	---	R to 140	---	---	---
	50\%	-	---	---	--	---	---	R to 212	---	---	---
Sodium Sulfate $\mathrm{Na}_{2} \mathrm{SO}_{4}$	Sat'd	160	180	212	140	140	140	R to 212	---	---	---
	0.10\%	---	---	---	---	---	---	R to 140	---	---	---
Sodium Sulfide $\mathrm{Na}_{2} \mathrm{~S}$	Sat'd	160	180	212	140	140	140	---	140	C to 104	---
Sodium Sulfite $\mathrm{Na}_{2} \mathrm{SO}_{3}$	Sat'd	160	180	212	140	140	140	R to 212	140	---	---
Sodium Thiosulfate$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} 05 \mathrm{H}_{2} \mathrm{O}$	--	---	180	180	140	140	140	---	140	---	---
	50\%	---	---	--	---	---	---	R to 248	---	---	---
Sour Crude Oil	--	---	---	140	140	---	---	---	---	---	---
Soybean Oil	--	---	---	73	---	140	---	---	140	---	---
Stannic Chloride SnCl_{4}	Sat'd	---	180	140	140	140	140	---	140	---	---
Stannous Chloride SNCl_{2}	15\%	120	180	140	140	140	140	---	140	---	---
	Sat'd	---	---	--	---	140	---	---	140	---	---
Starch	--	---	180	140	140	140	---	---	140	---	---
Starch Solution	Sat'd	---	--	---	---	140	---	---	140	---	---
Stearic Acid $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COOH}$	--	---	180	73	140	120	150	---	120	C to 194	---
	100\%	---	---	---	---	R to 120	---	---	R to 120	---	---

May not be fully applicable to pressurized applications
May not be fully applicable to pressurized applications

Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Stoddard's Solvent	--	---	N	---	N	73	140	---	73	---	---
Styrene $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2}$	--	---	---	73	---	C to 73	---	---	C to 73	R to 104	---
Succinic Acid $\mathrm{COOH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$	--	---	180	140	140	140	---	---	140	---	---
$\begin{aligned} & \text { Sugar } \\ & \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \end{aligned}$	Aq.	---	180	---	140	140	---	---	140	---	---
$\begin{aligned} & \hline \text { Sulfamic Acid } \\ & \mathrm{HSO}_{3} \mathrm{NH}_{2} \end{aligned}$	20\%	--	N	180	N	---	---	---	---	---	---
Sulfate Liquors (Oil)	6\%	---	180	140	140	---	---	---	---	---	---
Sulfite Liquors	6\%	73	180	---	140	140	---	---	---	---	---
$\begin{aligned} & \text { Sulfur } \\ & \mathrm{S} \end{aligned}$	--	---	180	212	140	140	140	---	---	104	---
Sulfur Chloride $\mathrm{S}_{2} \mathrm{Cl}_{2}$	--	---	---	C to 73	---	---	---	---	---	---	---
Sulfur Dioxide SO_{2}	Gas Dry	N	73	140	140	140	---	---	140	---	---
	Gas Wet	N	N	140	73	120	73	N	120	---	---
Sulfur Trioxide SO_{3}	Gas Dry	---	---	---	140	N	---	N	N	C to 68	---
	Gas	---	N	---	73	N	---	N	---	---	---

May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Sulfuric Acid $\mathrm{H}_{2} \mathrm{SO}_{4}$	5\%	---	---	---	---	---	---	---	---	---	R to 73
	30\%	120	180	180	140	140	140	R to 248	R to 140	---	N
	50\%	73	180	140	140	120	C to 73	R to 212	R to 140	---	---
	60\%	C to 73	180	73	140	120	C to 73	R to 248	---	---	---
	70\%	C to 73	180	73	140	R to 120	C to 73	---	---	---	---
	80\%	C to 73	180	73	140	R to 120	N	C to 248	---	---	---
	90\%	C to 73	150	73	73	120	N	R to 212	---	---	---
	93\%	N	140	C to 73	73	C to 73	N	---	---	---	---
	94\% - 98\%	N	130	C to 73	N	C to 73	N	C to 212	N	---	---
	100\%	N	N	C to 73	N	C to 73	N	---	---	C to 194	---
Sulfurous Acid $\mathrm{H}_{2} \mathrm{SO}_{3}$	--	---	180	140	140	140	140	R to 212	140	---	---
Tall Oil	--	---	C to 180	180	140	120	---	---	120	---	---
Tannic Acid $\mathrm{C}_{76} \mathrm{H}_{52} \mathrm{O} 46$	10\%	N	180	73	140	140	140	R to 212	140	---	---
	Sat'd	---	---	---	---	---	---	R to 212	---	---	---
Tanning Liquors	--	160	180	73	140	120	140	---	120	---	---
Tar	--	---	N	---	N	---	---	---	---	---	---
$\begin{aligned} & \text { Tartaric Acid } \\ & \mathrm{HOOC}(\mathrm{CHOH})_{2} \mathrm{COOH} \end{aligned}$	--	160	180	140	140	140	140	R to 248	140	---	---
	Sat'd	---	---	---	--	--	---	R to 248	R to 176	R to 194	---
Terpineol $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{OH}$	--	---	---	---	C to 140	---	---	---	---	-	---
Tetrachloroethane $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$	--	---	---	C to 73	C to 140	C to 120	---	---	C to 120	---	---
Tetrachloroethylene $\mathrm{Cl}_{2} \mathrm{C}=\mathrm{CCl}_{2}$	--	N	N	C to 73	C to 140	C to 120	---	C to 212	C to 120	C to 68	---
$\begin{aligned} & \hline \text { Tetraethyl Lead } \\ & \mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \end{aligned}$	--	---	73	73	73	---	---	---	---	68	---

May not be fully applicable to pressurized applications

Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Tetrahydrofuran $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$	--	N	N	C to 73	N	C to 73	C to 73	C to 68	N	---	---
Tetralin $\mathrm{C}_{10} \mathrm{H}_{12}$	--	---	N	N	N	N	---	---	N	---	---
Tetra Sodium Pyrophosphate $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \mathrm{O}_{10 \mathrm{H}}^{2} \mathrm{O}$	--	---	180	---	140	---	---	---	---	---	---
Thionyl Chloride SOCl_{2}	--	---	N	N	N	N	140	N	N	---	---
Thread Cutting Oils	--	---	73	73	73	---	---	---	---	---	---
Tin (II) Chloride SnCl_{2}	--	---	---	---	---	---	---	R to 212	---	---	---
Tin (IV) Chloride SnCl_{4}	--	---	---	---	---	---	---	R to 212	---	---	---
Titanium Tetrachloride TiCl_{4}	--	---	---	140	C to 73	120	---	---	120	---	---
Toluene (Toluol) $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$	--	N	N	C to 73	N	C to 120	N	---	C to 120	R to 140	R to 73
Tomato Juice	--	---	180	212	140	140	---	---	140	--	---
Transformer Oil	--	---	180	73	140	C to 120	---	---	C to 120	---	---
Transformer Oil DTE/30	--	---	180	---	140	R to 120	---	---	R to 120	---	---
Tributyl Citrate $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{7}$	--	---	---	C to 73	73	C to 120	---	---	C to 120	---	---
Tributyl Phosphate $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{PO}_{4}$	--	---	N	C to 140	N	73	---	---	73	R to 194	---
Trichloroacetic Acid $\mathrm{CCl}_{3} \mathrm{COOH}$	50\%	---	---	140	140	140	---	R to 104	140	---	---
	10\%	---	---	---	---	140	---	---	140	---	---
Trichlorobenzene $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$	--	---	---	---	---	---	---	R to 140	---	---	---
Trichloroethane $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}_{3}$	--	---	---	---	---	---	---	---	---	---	R to 122
Trichloroethylene $\mathrm{CHCl}=\mathrm{CCl}_{2}$	--	N	N	N	N	C to 120	N	R to 176	C to 68	C to 68	R to 176
Triethanolamine $\left(\mathrm{HOCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$	--	C to 73	73	140	73	73	73	C to 104	73	---	---
Triethylamine $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$	--	---	---	N	140	73	---	---	73	---	---
Trimethylolpropane $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3} \mathrm{C}_{3} \mathrm{H}_{5}$	--	---	---	140	73	C to 120	---	---	C to 120	---	---

May not be fully applicable to pressurized applications
Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Trisodium Phosphate $\mathrm{Na}_{3} \mathrm{PO}_{4} \bullet 12 \mathrm{H}_{2} \mathrm{O}$	--	73	180	140	140	140	140	---	140	---	---
Turpentine	--	N	N	N	140	C to 120	C to 73	---	C to 120	R to 140	---
Urea $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$	--	---	180	180	140	140	140	---	140	---	---
	10\%	-	---	---	---	---	---	R to 212	---	---	---
	Sat'd	---	--	---	--	---	---	R to 176	---	C to 140	---
Urine	--	160	180	180	140	140	140	---	140	---	---
Vaseline (Petroleum Jelly)	--	---	N	140	N	120	---	---	120	---	---
Vegetable Oil	--	---	C to 180	140	140	R to 140	---	R to 248	R to 140	---	---
Vinegar	--	73	150	140	140	140	140	---	140	194	--
Vinyl Acetate $\mathrm{CH}_{3} \mathrm{COOCH}=\mathrm{CH}_{2}$	--	---	N	73	N	140	---	C to 68	140	---	---
Water, Acid Mine $\mathrm{H}_{2} \mathrm{O}$	--	160	180	140	140	140	180	---	140	---	194
Water, Deionized $\mathrm{H}_{2} \mathrm{O}$	--	160	180	140	140	140	180	---	140	194	176
Water, Distilled $\mathrm{H}_{2} \mathrm{O}$	--	160	180	212	140	140	180	R to 248	140	194	---
Water, Potable $\mathrm{H}_{2} \mathrm{O}$	--	160	180	212	140	140	180	R to 248	140	194	---
Water, Salt $\mathrm{H}_{2} \mathrm{O}$	--	160	180	212	140	140	180	---	140	194	---
Water, Sea $\mathrm{H}_{2} \mathrm{O}$	--	160	180	212	140	140	180	R to 248	140	194	R to 176
Water, Soft $\mathrm{H}_{2} \mathrm{O}$	--	160	180	212	140	140	180	---	140	194	---
Water, Waste $\mathrm{H}_{2} \mathrm{O}$	--	73	180	212	140	140	180	---	140	194	---
Whiskey	--	---	180	140	140	140	140	R to 212	140	---	---
White Liquor	--	73	180	---	140	---	---	---	---	---	---
Wine	--	73	180	140	140	140	140	R to 248	140	---	---
Wines and Spirits	--	---	---	---	---	---	---	R to 212	---	---	---

May not be fully applicable to pressurized applications

Plastics at Maximum Operating Temperature (F)

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
$\begin{aligned} & \hline \hline \text { Xylene (Xylol) } \\ & \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{2} \end{aligned}$	--	N	N	N	N	N	N	C to 140	N	C to 194	---
$\begin{aligned} & \text { Zinc Acetate } \\ & \mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{o}_{2} \mathrm{H}_{2} \mathrm{O} \end{aligned}$	--	---	180	---	---	---	---	---	---	---	---
Zinc Carbonate ZnCO_{3}	--	---	180	140	---	140	---	R to 212	140	---	---
Zinc Chloride ZnCl_{2}	--	120	180	180	140	140	---	---	140	---	---
	50\%	---	---	---	---	---	---	---	---	C to 73	---
	Sat'd	---	---	---	---	---	---	R to 212	---	---	---
Zinc Nitrate $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \mathrm{O}^{2} \mathrm{H}_{2} \mathrm{O}$	--	160	180	180	140	140	140	---	140	---	---
	Sat'd	---	---	--	---	---	---	R to 212	---	---	---
$\begin{aligned} & \text { Zinc Oxide } \\ & \text { ZnO } \end{aligned}$	--	---	---	---	---	---	---	R to 212	---	---	---
Zinc Stearate $\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COO}\right)_{2} \mathrm{Zn}$	--	---	---	--	---	---	---	R to 122	---	---	---
Zinc Sulfate$\mathrm{ZnSO}_{4} \mathrm{O} 7 \mathrm{H}_{2} \mathrm{O}$	--	160	180	212	140	140	140	---	140	---	---
	Sat'd	---	---	---	---	---	---	R to 212	---	---	---

[^0]: ${ }^{1}$ Once cross-linked, PEX is no longer considered a thermoplastic material; however, it is included in this report as convenience for the reader.

[^1]: ***May not be fully applicable to pressurized applications***

[^2]: ***May not be fully applicable to pressurized applications***

[^3]: ***May not be fully applicable to pressurized applications***

